
Early View (EV): 1-EV

 In this context, mapping the distribution of a species can 
help to target potential area of presence and mitigate confl icts 
often associated with the recovery of large carnivores. Species 
distribution models (SDMs) have become important tools 
in the ecological, biogeographical and conservation fi elds 
(Guisan and Th uiller 2005). By correlating presence-only or 
presence – absence data of a species to environmental factors, 
SDMs provide an understanding of habitat preferences and 
predictions on future species distribution. Th is is especially 
relevant for species involved in confl icts, since predicting 
their future presence can help targeting contentious areas 
and guide management to reduce confl icts (Guillera-Arroita 
et   al. 2015). However, the monitoring of large carnivores 
remains challenging to carry out in the fi eld because these 
species live at low density and occupy wide areas (Woodroff e 
2001). Th erefore, assessing the distribution of these species 
comes with methodological challenges. 

 First, standard SDMs such as Maxent (Phillips et   al. 
2006) rely on the assumption that the focal species is 
detected everywhere it is present (Yackulic et   al. 2013). 
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 Large carnivores are often considered as key elements for 
maintaining ecosystems. Because of their high position in 
the trophic chain, their extinction can lead to trophic cas-
cades and detrimental changes in species abundance and 
functioning of ecosystems (Ripple et   al. 2014). Once wide-
spread in Europe, many populations of large carnivores were 
extirpated over the last century, mainly due to interferences 
with human activities (Breitenmoser 1998, Ripple et   al. 
2014). Since the 1970s, all large carnivores have recovered, 
resulting in most of the European countries hosting at least 
one viable population of large predators (Chapron et   al. 
2014). Often used as a conservation success story, the recov-
ery of large carnivores in human-dominated areas comes 
with challenges, including the question of whether there 
are any suffi  ciently large and functional areas left for viable 
populations (Packer et   al. 2013). Another issue is how to 
coordinate management of these species at large scales, pos-
sibly across borders (Linnell and Boitani 2012, Bischof et   al. 
2015), in particular in the context of international treaties 
and directives (e.g. the European Habitats Directive). 
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 While large carnivores are recovering in Europe, assessing their distributions can help to predict and mitigate confl icts with 
human activities. Because they are highly mobile, elusive and live at very low density, modeling their distributions presents 
several challenges due to 1) their imperfect detectability, 2) their dynamic ranges over time and 3) their monitoring at large 
scales consisting mainly of opportunistic data without a formal measure of the sampling eff ort.    

 Here, we focused on wolves  Canis lupus  that have been recolonizing France since the early 1990s. We evaluated the 
sampling eff ort a posteriori as the number of observers present per year in a cell based on their location and professional 
activities. We then assessed wolf range dynamics from 1994 to 2016, while accounting for species imperfect detection and 
time- and space-varying sampling eff ort using dynamic site-occupancy models.    

 Ignoring the eff ect of sampling eff ort on species detectability led to underestimating the number of occupied sites by 
more than 50% on average. Colonization appeared to be negatively infl uenced by the proportion of a site with an altitude 
higher than 2500 m and positively infl uenced by the number of observed occupied sites at short and long-distances, for-
est cover, farmland cover and mean altitude. Th e expansion rate, defi ned as the number of occupied sites in a given year 
divided by the number of occupied sites in the previous year, decreased over the fi rst years of the study, then remained 
stable from 2000 to 2016. Our work shows that opportunistic data can be analyzed with species distribution models that 
control for imperfect detection, pending a quantifi cation of sampling eff ort. Our approach has the potential for being used 
by decision-makers to target sites where large carnivores are likely to occur and mitigate confl icts.   
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Going undetected at a given site does not necessarily mean 
that this species is absent from that site, but rather that it 
may simply be missed for various reasons related to observer 
abilities, habitat characteristics or species level of activity 
(K é ry et   al. 2010, K é ry 2011). Ignoring the issue of imper-
fect detection can result in false absences that lead to fl awed 
inference in two ways: 1) the distribution maps are biased by 
underestimating actual presences (K é ry and Schaub 2011, 
Lahoz-Monfort et   al. 2014); 2) there may be confusion 
in identifying the drivers of the species distribution when 
detection depends on environmental explanatory variables 
that are independent from the variables infl uencing the spe-
cies ’  actual presence (Lahoz-Monfort et   al. 2014). To cope 
with this fi rst issue, single-season or static site-occupancy 
models were developed (Mackenzie et   al. 2006) and have 
been widely used for carnivores (Long et   al. 2010, Th orn 
et   al. 2011, Sunarto et   al. 2012). Based on spatial and tem-
poral replicated sampling of the target species, these models 
allow making the distinction between non-detections and 
true absences via the estimation of species detectability. 

 Second, most SDMs are implicitly based on the ecological 
niche concept (Grinnell 1917, Hutchinson 1957) and there-
fore rely on two main hypotheses: 1) the species is present in 
areas where environmental conditions are the most favorable 
and 2) dispersal is not a limiting factor (Jeschke and Strayer 
2006). However, expanding species are often absent from an 
area not because conditions are unfavorable but because they 
have not yet dispersed to this area, or because of geographical 
barriers or dispersal constraints (Ara ú jo and Guisan 2006). 
Hence, static SDMs ignore important dynamic processes, 
which may lead to bias in the resulting distributions and 
should therefore not be used for prediction (Zurell et   al. 
2009, Yackulic et   al. 2015). To deal with this second issue, 
occupancy models have been extended (Mackenzie et   al. 
2003, Royle and K é ry 2007) to account for the infl uence 
of dynamic processes such as colonization and extinction 
on the species range dynamics (Mackenzie et   al. 2003). 
So-called multi-season or dynamic site-occupancy models 
are increasingly used to assess the range dynamics of expand-
ing or invasive species (Bled et   al. 2011, Broms et   al. 2016a), 
but remain rarely applied to carnivores (Marcelli and Fusillo 
2012, Miller et   al. 2013). 

 Th ird, data collection is particularly costly if not unfea-
sible for elusive species that need wide areas due to the large 
presence area required for sampling. In this context, citizen 
science is considered as an effi  cient source of information 
to assess changes in a species distribution by covering wide 
areas (Schmeller et   al. 2009). However, data from citizen sci-
ence are often collected with protocols that do not control 
for variation in the sampling eff ort 1) in time: a site can be 
sampled by several observers during a given year and not the 
following year and 2) in space: given two sites where the spe-
cies is present, if the sampling eff ort is lower in one site, this 
might lead to recording a false absence in this site (K é ry et   al. 
2010). As a consequence, if sampling eff ort is not controlled 
for, detectability can be estimated low, for instance at sites 
with no sampling eff ort, leading to biased estimates of the 
distribution area (Van Strien et   al. 2013). 

 Static and dynamic occupancy models hold promise to 
analyze population trends from opportunistic data because 
the data collection process is formally incorporated (Isaac 

et   al. 2014). However, to address the third issue and apply 
occupancy models to opportunistic data, one needs to dif-
ferentiate between a site that was not sampled and a site that 
was sampled but the species was not detected. In the case of 
several species being monitored, the detection of a species 
in a site informs about the non-detection of other species 
because this site is known to have been sampled (Van Strien 
et   al. 2013). Th is no longer holds for single-species settings, 
and the assumption is sometimes made that all sites where 
at least one detection occurred are sampled throughout the 
whole duration of the study (Molinari-Jobin et   al. 2012, 
Rich et   al. 2013). 

 Here, we considered grey wolves  Canis lupus  as a case 
study to illustrate the challenges in using opportunistic data 
and SDMs to infer the range dynamics of large carnivores. 
Wolves disappeared in most of the western European coun-
tries during the twentieth century (Promberger and Schr ö der 
1993, Boitani 2010) except in Spain, Portugal and Italy 
(Boitani and Ciucci 1993). Th e species naturally recolo-
nized the French Alps from the remaining Italian population 
(Vali è re et   al. 2003, Fabbri et   al. 2007). Because the species 
is protected by law while being a source of confl icts with 
sheepherding, its recolonization process needs to be carefully 
monitored. 

 Our main objective was to describe and determine the 
drivers of wolves ’  recolonization pattern in France between 
1994 and 2016. To account for imperfect detection, we built 
a dynamic site-occupancy model (Mackenzie et   al. 2006) 
and analyzed opportunistic data collected by a network of 
trained volunteers since 1992. To do so, we built a poste-
riori the sampling eff ort to account for biases in data col-
lected through citizen science. To describe the recolonization 
process over time, we addressed two main questions: 1) what 
are the environmental and biological factors infl uencing 
colonization and extinction probabilities? 2) How can sam-
pling eff ort be inferred a posteriori, i.e. after the data were 
collected, and to what extent does sampling eff ort correlate 
with detection probability?   

 Methods  

 Study species and area 

 Th e fi rst wolf  Canis lupus  occurrence was detected in France 
in the early 1990s as a consequence of the Italian popula-
tion ’ s expansion (Vali è re et   al. 2003, Ciucci et   al. 2009). Th e 
species then spread outside the Alpine mountains to reach 
the Pyrenees and the Massif Central westward fi rst in 1999, 
and the Vosges Mountains northward from 2011. Th e wolf 
is an opportunist species that can adapt its diet depending 
on available prey species (Poulle et   al. 1997, Imbert et   al. 
2016). In areas with livestock farming, strong interactions 
between wolf presence and sheep breeding usually occur. Th e 
study area mostly covered eastern France and a major part of 
central France (Fig. 1).   

 Data collection 

 Wolf detection data were made of presence signs sampled 
all year long from 1992 to 2016 thanks to a network of 
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professional and non-professional observers. Th e network 
size has increased from a few hundred people in 1994, up to 
3138 wolf experts in 2016. Every observer is trained during 
a 3-d teaching course led by the French National Game and 
Wildlife Agency (ONCFS) to document signs of the spe-
cies ’  presence (Duchamp et   al. 2012). Presence signs went 
through a standardized control process combining genetic 
identifi cation tools, and validation standards to prevent mis-
identifi cation (Duchamp et   al. 2012). For every presence 
sign, the date and location of collection were stored in a 
geo-referenced database. Th ese data are considered oppor-
tunistic in the sense that monitoring occurs all year long 
in an extensive manner without explicitly quantifying the 
sampling eff ort.   

 Dynamic site occupancy models 

 To model the colonization dynamics of wolf, we used 
dynamic site-occupancy models (Mackenzie et   al. 2003) 
where sampling units were defi ned as 10    �    10 km cells 
(European Commission 2006). Site occupancy models rely 
on the closure assumption which states that the ecologi-
cal state of a site (whether it is occupied or not) remains 
unchanged through occasions (or surveys)  j  within a year 
 k . Sites were monitored mainly in winter from December 
to March, the most favorable period to detect the species 
between the two peaks of dispersal events in spring and fall 
(Mech and Boitani 2010). We defi ned the secondary occa-
sions  j  as December, January, February and March and  y  i,j,k , 
the observed state of site  i  equal to 1 if at least one sign of 
presence was found at site  i  during occasion  j  in the year  k  
(and 0 otherwise). 

 We considered a state-space formulation of the dynamic 
occupancy model (Royle and K é ry 2007) in which the model 
is viewed as the combination of 1) the ecological process that 
involves the latent ecological state of a site, i.e. whether it is 
occupied or not; 2) the observation process that leads to the 
detections or non-detections by the observer conditional on 
the state of the system. Th e colonization probability  γ  i,k  is the 
probability that an empty site  i  during year  k  becomes occu-
pied during year  k  �   1, while the extinction probability  ε  i,k  is 
the probability that an occupied site  i  during year  k  becomes 
empty during year  k  �   1. We defi ne  z  i,  1  as the initial latent 
state of site  i  as being drawn from a Bernoulli distribution 
with the success probability being   Y   i,  1 , 

  z  i,  1   ∼   Bernoulli  (  Y   i,  1 ) 

 All other latent states  z  i,k  for  k  �   1 are drawn from a Bernoulli 
distribution as 

  z  i,k    �      1   | z  i,k   ∼   Bernoulli  ( z  i,k  (1  –   ε  i,k )  �  (1  –   z  i,k  )  γ  i,k ) 

 On top of the ecological process stands the observation 
process, in which the detections/non-detections are drawn 
from a Bernoulli distribution 

  y  i,j,k  |z  i,k    ∼  Bernoulli ( z  i,k   p  i,j,k ) 

 where  p  i,j,k  is the probability that the species is detected at 
site  i  for an occasion  j  during year  k . Th e state-space formu-
lation is appealing as it makes explicit the latent states  z  i,k  
that can be used to build distribution maps. We modelled 
detection probability with logistic regression using sampling 
eff ort, road density and months as covariates. We modelled 
colonization probability with logistic regression using for-
est cover, farming cover, rock cover, mean altitude, propor-
tion of high altitude ( �    2500 m), the number of observed 
occupied neighboring sites at short distance, the number of 
observed occupied neighboring sites at long distance and 
the distance to the nearest barrier (road or main river) as 
explanatory variables. Finally, we modelled extinction proba-
bility as a logistic function of  ‘ year ’  as a continuous covariate. 
We describe these covariates below.   

 Sampling effort 

 Monitoring the range expansion of wolves at the country 
level prevented us from implementing any standardized 
experimental sampling design. Instead, the presence signs 
were sampled in an opportunistic way and the sites were 
defi ned a posteriori. We adopted an original approach to 
infer the non-detections based on the available qualitative 
information on the observers. When entering the network, 
observers attended a 3-d training session to learn how to 
identify the species and how it is monitored (Duchamp 
et   al. 2012). During these training sessions, we recorded 
the observers ’  personal and professional address, socio-
professional category and entry date into the network. 
Th e entry and exit dates (whenever known) were used to 
quantify how many observers were present in the network 
each year. If necessary, we updated their socio-professional 
category. We calculated a circular buff er for the prospection 
area for each observer based on a radius specifi c to his/her 
socio-professional category and a center located at his/her 

  Figure 1.     Maps of cumulated species detections (red dots) for the 
period 1994 – 2016. Sites were defi ned as 10    �    10 km cells within a 
grid covering all detections. Dark green areas represent mountain-
ous areas with an altitude higher than 1500 m.  
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and rock cover would have a negative eff ect on coloniza-
tion. Farmland cover was defi ned as a covariate including 
pastures areas which can be used by livestock, a possible 
prey to wolves and a proxy for rural landscape under human 
infl uence. Altitude may also have an infl uence on coloniza-
tion (Llaneza et   al. 2012, Falcucci et   al. 2013). We used the 
IGN BD_ALTI  ®   database (250 m resolution) to calculate 
the mean altitude of each site as well as the proportion of 
altitude higher than 2500 m. We predicted a site with a high 
proportion of high-altitude ( �    2500 m high) would be less 
attractive for the species as ungulate species might be less 
abundant above this limit. 

 Dispersal capacity is a key factor to explain the dynamic 
of wolf colonization (Boyd and Pletscher 1999, Kojola et   al. 
2006, Ciucci et   al. 2009). Because cells occupied by estab-
lished packs may act as a source of dispersers at short and 
long-distance (Yackulic et   al. 2012), the neighborhood of an 
unoccupied cell may infl uence its colonization probability 
(Veran et   al. 2016). In that spirit, the presence of individuals 
at short and long-distance could be accounted for by using 
conditional autoregressive models and auto-logistic models 
(Bled et   al. 2013). However, due to the computational bur-
den and convergence issues, we could not implement this 
approach here. We therefore defi ned two covariates that con-
sisted of the observed number of contiguous observed occu-
pied cells at both short and long-distances around the focal 
cell. Th e short-distance covariate was defi ned as the number 
of observed occupied cells directly contiguous to the focal 
cell i.e. situated within a distance of 10 km. Th e limit for the 
long-distance parameter was set to avoid a dilution eff ect due 
to the small number of observed occupied cells at very long-
distances but large enough to account for most long-distance 
observed occupied cells that could play a role in the coloniza-
tion probability. Based on observations of wolf dispersal in 
the western Italian Alps (Marucco and McIntire 2010), we 
set this limit at 150 km around the focal cell. We expected a 
positive eff ect of these two covariates on the probability of a 
site to be colonized. 

address (Supplementary material Appendix 1 Table A1). 
For instance, for an observer belonging to the category 1 
(departmental authority) whose address was located in the 
French Department number 39, his/her prospection area 
would be 4999 km ² , which is the size of the Department 
(Supplementary material Appendix 1 Fig. A1 and Table A2). 
For this observer, a circular buff er was built with a radius 
calculated as 

  Radius     � prospection area 
π

 

 For each 10    �    10 km cell, we then calculated the number of 
observers monitoring the species per year, i.e. the sampling 
eff ort, by summing the number of prospection areas overlap-
ping the cell (Supplementary material Appendix 1 Fig. A2). 
Sites with a sampling eff ort equal to zero were not prospected 
by observers. To avoid estimating a detection probability at 
sites that were not prospected, we set the detection probabil-
ity to zero when the sampling eff ort was null at these sites. 
When at least one observer was found in a cell in a given 
year, we considered that sampling occurred. We expected 
that the sampling eff ort had a positive eff ect on the detec-
tion parameter. We performed a sensitivity analysis to assess 
how a change in the construction of the sampling eff ort 
infl uenced the model parameter estimates (Supplementary 
material Appendix 1 Fig. A3).   

 Other covariates 

 Keeping in mind that wolves can adapt to a large range of 
diff erent habitats, we incorporated proxies of variables that 
might shape the wolf distribution (Table 1). Using the 
CORINE Land Cover  ®   database (U.E  –  SOeS, Corine Land 
Cover 2006), we defi ned three covariates to characterize the 
landscape of the study area: forest cover, farming cover and 
rock cover. Forest cover may structure the ungulate distribu-
tion (i.e. prey species). As a consequence, we expected that 
forest cover would have a positive eff ect on colonization, 

  Table 1. Description and expected effects of covariates used to describe the occupancy dynamics of wolf in France.  

Covariate Abbreviation Parameter Description
Expected 

effect Reference

Forest cover Forest Colonisation ( γ ) Percentage of mixt, coniferous or 
deciduous forests cover

 � Oakleaf et   al. 2006, 
  Fechter and Storch 2014

Farmland cover Agr Colonisation ( γ ) Percentage of pasture lands and other 
farming activities cover

 � / – Glenz et   al. 2001

Rock cover Rock Colonisation ( γ ) Percentage of rock cover  – 
High altitude Halt Colonisation ( γ ) Proportion of altitude higher than 

2500 m
 – Glenz et   al. 2001

Altitude Alt Colonisation ( γ ) Mean altitude  � / – Llaneza et   al. 2012
  Falcucci et   al. 2013

Distance to the closest 
barrier

Dbarr Colonisation ( γ ) Minimal distance between a highway 
or one of the fi ve main rivers in 
France

 – Falcucci et   al.   2013

Short distance occupied 
neighboring cells

SDAC Colonisation ( γ ) Proportion of observed occupied 
contiguous cells

 � Bled et   al. 2011

Long distance occupied 
neighboring cells

LDAC Colonisation ( γ ) Proportion of observed occupied 
cells within a 150 km radius 
without the contiguous cells

   � 

Year (continuous) Trend-year Extinction ( ε ) Year as a linear effect  – Marucco 2009
Sampling effort SEff Detection ( p ) Number of observers per site per year  � 
Road density Rdens Detection ( p ) Percentage of site covered by roads  � 
Month-survey survey Detection ( p ) Occasion of survey (categorical)  � / – Marucco 2009
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10 000 iterations on which we based our inference. We used 
posterior medians and 95% credible intervals to summarize 
parameter posterior distributions. To assess the eff ect of a 
covariate on a parameter, we set the other covariates to their 
mean value. We checked convergence visually by inspecting 
the chains and by checking that the R-hat statistic was below 
1.1 (Gelman and Shirley 2011). We fi nally produced distri-
bution maps of the latent states by using a posteriori means 
of the  z  i,k  from the best model. To assess the fi t of our fi nal 
model, we used the posterior predictive checking approach 
(Gelman et   al. 1996) that has recently been applied to occu-
pancy models (Broms et   al. 2016b) (Supplementary material 
Appendix 1 Fig. B1).   

 Data deposition 

 Data available from the Dryad Digital Repository:  <  http://
dx.doi.org/10.5061/dryad.g9s1d  >  (Louvrier et   al. 2017).    

 Results  

 The effect of covariates on detectability and the 
dynamic of occupancy 

 Th e model best supported by the data had detection as 
a function of sampling eff ort, road density and occasion 
(month) and colonization as a function of forest cover, 
farmland cover, mean altitude, proportion of high-altitude 
and the number of observed occupied cells at a short and 
long-distance neighborhood (Supplementary material 
Appendix 1 Table C1). Th is model appeared to fi t the 
data adequately well (Supplementary material Appendix 1 
Fig. B1). 

 Initial occupancy probability was low, as expected since 
few sites were detected as occupied at the beginning of the 
study (Supplementary material Appendix 1 Table C2). 

 As predicted, forest cover had a positive infl uence on the 
probability that a site became colonized. Th e proportion of 
farmland cover within a cell also appeared to have a positive 
infl uence on this probability. Below 1500 m of mean alti-
tude, the probability that a site became colonized was close 
to zero, whereas above this limit the probability reached up 
to 0.07 (0.05; 0.11) (Fig. 2). Th is probability decreased with 
the high-altitude proportion in a site. Over time, the num-
ber of observed occupied neighboring cells increased at both 
short and long-distance (Supplementary material Appendix 
1 Fig. D1). If all of the 8 neighboring cells were observed as 
occupied, the probability that the target cell became colo-
nized was 0.48 (0.32; 0.58) compared to a colonization 
probability of 0.11 (0.08; 0.15) if the target site had only 
0 to 2 contiguous neighboring cells observed occupied. As 
this number increased, the probability that a site became 
colonized increased accordingly (Fig. 2). 

 Sites located within the Alps had the highest number 
of observed occupied sites at both short and long-distance. 
Colonization probability was the highest in this area 
(Fig. 3). Th e highest part of the Alps (i.e. sites with the 
greatest proportions of high-altitude) remained with a low 
colonization probability (Supplementary material Appendix 1 

 Because dispersal could be driven by the presence of phys-
ical barriers (Wabakken et   al. 2001, Blanco et   al. 2005), we 
defi ned a landscape covariate depicting the distance from the 
center of the site to the closest barrier defi ned as highways or 
rivers (U.E  –  SOeS, Corine Land Cover 2006). We expected 
this covariate to impact colonization negatively. 

 In the fi rst few years after sites become newly colonized, 
extinction probability is expected to be high as long as only 
isolated individuals use them. Once a pack has settled, pack 
persistence is the rule for wolves when other packs are pres-
ent in the surrounding areas (Mech and Boitani 2010). Pack 
splitting may rise from various sources including harvest or 
poaching of alpha pairs (Gehring et   al. 2003, Brainerd et   al. 
2008) leading to a locally extinct site. Within the distribu-
tion of an actively expanding population, extinct sites might 
be recovered by surrounding individuals, either by dispersers 
or by neighboring packs. We therefore expected extinction 
probability to decrease over time. 

 Finally, in addition to sampling eff ort, we considered the 
potential eff ect of road densities on the species detectability, 
fi rst through facilitation of site accessibility for the observ-
ers and second, because cross roads can be used as marking 
sites (Barja et   al. 2004), which can lead to a higher detect-
ability. Because presence signs rely partly on track records 
in the snow, we considered month as a categorical variable 
to account for the variation in detection conditions due 
to weather variations across the survey months (Marucco 
2009). 

 Last, we considered the initial occupancy probability as 
constant since only two sites were occupied in the fi rst year 
of the study, which was not enough to assess the eff ects of 
covariates on this parameter.   

 Model fi tting, selection and validation 

 We performed covariate selection using stochastic search 
variable selection (SSVS; George and McCulloch 1993, 
O ’ Hara and Sillanp ä  ä  2009). In brief, SSVS builds a model 
that includes all covariate combinations as special cases. In 
practice, this is achieved by adding binary indicator vari-
ables,  α  p  equals 1 or 0, which allows the estimation of the 
regression parameter  β  p  or excludes it by setting it to a con-
stant (Supplementary material Appendix 1 Table C1). In a 
Bayesian framework, we explored the model space generated 
by excluding or including covariates. Th e priors for regres-
sion parameters  β  p  were written as (1  –  w) Normal(0,0.0001) 
 �  w Normal(0,1) with w  ∼  Bernoulli(0.5) therefore assum-
ing a priori that each covariate had a 50-50 chance of being 
present in the model. We checked that the model space was 
well sampled by the SSVS and that we did not get stuck 
in a particular set of models. We used three diff erent initial 
model confi gurations (with all covariates vs without any of 
the covariates vs a few covariates picked at random in the set 
of all covariates). We did not explore diff erent priors as mix-
ing and convergence were satisfying. Prior to model selec-
tion, we ran a Spearman test to check for correlations among 
covariates. 

 We used Markov chain Monte Carlo (MCMC) simu-
lations and parameter estimation. We ran three MCMC 
chains with a burn-in period of 2500 iterations followed by 
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in 2016 (around 70-fold increase, see top panel in Fig. 5). 
Th is led to an apparent occupancy (proportion of occupied 
sites on the total number of sites in the study area) varying 
from 0.001 in 1994 to 0.047 in 2016. 

 Accounting for both sampling eff ort and imperfect 
detection, we estimated the number of occupied sites as 
up to 10 (1; 19) in 1994 and up to 211 (195; 227) in 2016 
(top panel in Fig. 5). Overall, the estimates were higher 
than the na ï ve estimates of occupancy. When we ignored 
the sampling eff ort in the detection process, we found an 
estimated number of occupied sites equal to 2 (1; 4) in 
1994 and up to 192 (180; 204) in 2016. Most discrepan-
cies between the two models (accounting for vs. ignoring 
the sampling eff ort) were found at the early stage of the 
colonization process when the network of observers was 
implemented mainly in eastern France (compare bottom 
left and right panels in Fig. 5; see also Supplementary 
material Appendix 1 Fig. D3). Accounting for the sampling 
eff ort allowed us to infer the species presence on sites that 
were not prospected or prospected with a low sampling 
eff ort (top panel in Fig. 5). 

Fig. D2). Overall, this probability remained higher than zero 
in mountainous areas and increased with time as the number 
of occupied sites increased (Fig. 3). 

 Finally, and as expected, detection probability varied 
according to the survey month with the lowest mean value 
of 0.17 (0.16; 0.18) in December and the highest value of 
0.25 (0.24; 0.26) in January (Fig. 4). As expected, detection 
probability increased when the number of observers per site 
increased but, in contrast with what we expected, decreased 
with increasing road density. Th e sensitivity analysis showed 
weak eff ects of variations in the prospection areas used to 
build the sampling eff ort, except for the number of observed 
occupied sites at long distance (Supplementary material 
Apendix 1 Fig. A3).   

 Distribution map 

 From 1994 to 2016, 10 918 presence signs were recorded by 
the network and used in our analysis. Th e species was ini-
tially spotted in 2 cells in 1994 and was detected in 188 cells 

  Figure 2.     Relationship between the estimated colonization probability and (A) short-distance occupied neighboring cells, (B) long-distance 
occupied neighboring cells, (C) proportion of forest cover, (D) altitude, (E) proportion of farmland cover, and (F) site proportion of 
altitude higher than 2500 m.  
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  Figure 3.     Maps of estimated colonization probability between 1995 and 1996, 2001 and 2002, 2009 and 2010, 2015 and 2016 from the 
best model (Table 2). Black dots represent detections made in 1995, 2001, 2009, and 2015.  

  Figure 4.     Joint eff ects of road density, standardized sampling eff ort and occasion (month) on the species detection probability.  
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 Discussion 

 Determining favorable areas is often accomplished by 
building distribution maps using habitat suitability mod-
els (Mladenoff  et   al. 1999) or occupancy models (Marucco 
2009). However, these studies often rely on a static relation-
ship between the species of interest and its environment 

 Our results showed that in 1994 the species was found 
only in the southern Alps, and then actively colonized 
towards the northern Alps at the beginning of the 2000s. 
Th e colonization process started to reach the Pyrenees and 
Massif Central area in early 2000, and the Vosges area in the 
very north-eastern part of France, at the beginning of the 
2010s, indicating that the French wolf population is still in 
a phase of expansion west and northward from the alpine 
range. Th is led to an average expansion rate (i.e. number 
of occupied sites divided by the number of occupied sites 
the previous year) of 112% (100%; 128%) (Fig. 6). Th is 
expansion rate fi rst decreased over time, from 225% (118%; 
600%) at the early stage of the wolf colonization in 1994 to 
103% (91%; 117%) in 2000 due to low number of occupied 
cells, then stabilized at 107% (98%; 117%) on average per 
year demonstrating that the population is still in an expand-
ing phase mainly thanks to the colonization outside of the 
alpine range. 

 Th e model did not predict absence in places where pres-
ence signs were found (Fig. 7). Sites with high occupancy 
probability were mainly close to the sites where the species 
had been previously detected, mostly due to the eff ect of 
short-distance neighbors. Some sites had a high probability 
of being occupied ( �    0.75), however the uncertainty associ-
ated with those predictions was also high (standard deviation 
[SD]  �    0.30). We found sites with high probability of occu-
pancy ( �    0.75) with low uncertainty (SD    �    0.20), and some 
of those sites were observed as occupied in the following year 
because the model propagates information backwards in 
time and so  z  k  is informed directly by  zk    �      1 .    

  Figure 5.     Up: number of 10    �    10 km cells observed (black), estimated occupied ignoring sampling eff ort (red) and estimated occupied 
accounting for sampling eff ort (blue) for each year from 1994 to 2016. Also displayed is the 95% credible interval for both estimates of the 
sampling eff ort. Down: maps of diff erences between estimates of occupancy from the model accounting for sampling eff ort and the one 
ignoring sampling eff ort. Dark red sites are sites that appeared estimated occupied by the model accounting for sampling eff ort but did not 
appear occupied once ignoring sampling eff ort. Both maps are associated with maps of the sampling eff ort on their right, for the years 1996 
and 2016.  

  Figure 6.     Growth rate (i.e. number of sites divided by the total 
number of sites the previous year) given for each year from 1994 to 
2016, on a log scale.  
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the sampling eff ort. Furthermore, by accounting for the 
number of observed occupied neighboring cells, we made 
the detection history of a focal cell dependent partly on 
the detection histories of the neighboring cells. If the 
source of dependence is unknown, spatial autocorrelation 
can be modeled using geostatistical tools on occupancy or 
extinction/colonization parameters and also on detection 
(Bled et   al. 2013). 

 Th ird, the status of a site should not change during 
primary occasions  –  the closure assumption (Rota et   al. 
2009). We used the data provided within the winter period 
from November to March as a primary occasion because it 
corresponds to the most stable period in the social organiza-
tion of the packs. If movements or mortality occurred inside 
or outside of the sampling sites, it is likely, in our study, that 
the probability of occupancy in a given time interval did 
not depend on the occupancy status of a site in the previ-
ous time interval (Mackenzie and Royle 2005). In this situ-
ation of so-called random temporary emigration, the bias 
in parameter estimates is minimal, but occupancy should 
be interpreted as use of the sampling area rather than the 
proportion of area occupied by the species (Mackenzie et   al. 
2004). 

 Fourth, there should be no unmodelled heterogeneity in 
the model parameters. Regarding the detection probabil-
ity, some heterogeneity might remain due to a diff erence of 
detection in the presence signs, e.g. tracks vs hair (Graves 
et   al. 2011). Th is was unlikely to occur in our study because 

(Jedrzejewski et   al. 2008). Here, we used dynamic site-
occupancy models and brought new insights on the pro-
cesses governing the dynamic of recolonization of a keystone 
carnivore species. By controlling for species detectability and 
heterogeneous sampling eff ort, our approach can be used 
to assess the distribution dynamics of any species based on 
opportunistic data, pending relevant information is gathered 
on the people collecting the data.  

 Model assumptions 

 Site occupancy models rely on several assumptions that need 
to be discussed (Mackenzie et   al. 2003, 2006). First, the spe-
cies should not be detected when absent from a site (i.e. no 
false positives). Th is is unlikely to happen in our case since 
we did not account for presence signs that were rejected 
because they did not fulfi ll the standardized criteria used to 
avoid species misidentifi cation (Duchamp et   al. 2012). If 
doubts persist about the occurrence of false positives, this 
assumption could be relaxed by using site-occupancy models 
that account for misidentifi cations (Miller et   al. 2011, Rich 
et   al. 2013). 

 Second, detection histories of all sampling units are 
assumed to be independent. However, detection histories 
were likely dependent in space because of a non-homogeneous 
spatial sampling eff ort inherent to opportunistic data. We 
partly accounted for this non-independence by quantifying 

  Figure 7.     Maps of estimated occupancy (top) and associated standard deviation (bottom) for years 1996 and 2016. Black dots represent 
detections made in 1996 and 2016.  
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high road density. As expected, we found that detection 
probability increased when sampling eff ort increased, there-
fore highlighting the importance to account for imperfect 
detection when it is likely to be inhomogeneous in time and 
space. Finally, detection varied according to the month of 
the survey, which can be explained by the variability in snow 
conditions in the study area. 

 We found that colonization was mainly infl uenced by 
the number of observed occupied neighbors at short and 
long-distances, showing that dispersal and competition for 
space with other packs is a key factor of the dynamic of 
occupancy. Th ese results corroborate those of Adams et   al. 
(2008) who showed that dispersal was the main component 
explaining wolf population dynamics. Several long-distance 
dispersal events have been documented across the alpine area 
(Wolf Alpine Group 2014) and in France (Duchamp et   al. 
unpubl.). Further studies explicitly modeling dispersal pro-
cesses could help to better predict wolves colonization by 
accounting for factors that could enhance or slow down the 
dispersal rate for instance (Broms et   al. 2016a). 

 We found that mean altitude had a positive eff ect on 
colonization probability. Wolves are highly fl exible and can 
live in various areas from maize cultures to high moun-
tains (Kaczensky et   al. 2013). Starting from central Italy 
(Lucchini et   al. 2002, Fabbri et   al. 2007), wolves reached 
the alpine range via the natural Apennine mountain corri-
dor. Th erefore, the eff ect of mean altitude may be related to 
the history of the wolves ’  natural recovery process. However, 
we also found a negative eff ect of the proportion of altitude 
higher than 2500 m, i.e. the higher the proportion of high-
altitude, the less likely a site was to become colonized. Above 
2500 m, vegetation turns to sparse vegetation with rocky 
covers and snow. In contrast, more forest cover associated 
with lower altitudes ( �    2500 m) increased the probability 
that a site become colonized mainly because these habitats ’  
structure and composition are much more suitable to the 
presence of key prey species (Darmon et   al. 2012). To a lesser 
extent, the eff ect of farmland cover was also found to have a 
positive infl uence on the colonization probability. Although 
pasture areas host domestic preys (Meriggi and Lovari 1996) 
and may infl uence wolf colonization, the farmland covariate 
refers to rural exploited landscapes usually located down the 
valleys or lowlands. As wolf recovery is increasing over time, 
dispersers do not have other choices than to fulfi ll free avail-
able space to colonize. Th e overlap between human range 
activities and wolf settlement then increases as the recovering 
process is going on. Th e inclusion of more explicit covariates 
related to pastoral activity, such as the number of sheep in 
space, may provide a better understanding of the interaction 
between domestic prey and wolf presence, but these were not 
available to us.   

 Trends in wolf recolonization 

 Colonization patterns have been studied during recent decades 
(Wabakken et   al. 2001). It appears that in Scandinavia, 
wolves were showing a colonization process that is typical 
of species with high dispersal capacities and pre-saturation 
dispersal (Swenson et   al. 1998). Th is process is character-
ized by single long leaps forward and as a consequence, the 

the vast majority of presence signs are tracks. Regarding the 
colonization parameter, even though we had data on the 
number of killed preys during the hunting season, we did 
not have information on wild prey density at such a large 
scale. Th erefore, we used characteristics of their habitats as a 
proxy for their presence (Jedrzejewski et   al. 2008). 

 Besides the usual assumptions of occupancy models, we 
also had to deal with opportunistic data that are collected 
through non-standardized sampling protocols. To cope with 
opportunistic data, we defi ned a grid of spatial units that 
was overlaid on the map of detections/non-detections. We 
used 10    �    10 km cells as sampling units, a choice we made 
in agreement with what was recommended by the European 
Union (European Commission 2006) and also shown to be 
the best tradeoff  between the species territory size and sensi-
tivity of the distribution to the size and shape of the unit cell 
(Marboutin et   al. 2010). Th e average wolves ’  territory size 
vary between 100 and 400 km ²  in western and central Europe 
(Ciucci et   al. 1997, Mech and Boitani 2010, Duchamp et   al. 
2012). Although these cells might not entirely cover wolves 
territories, Latham et   al. (2014) studied the eff ect of grid size 
to assess wolf  ’ s occupancy and found that taking a large grid 
size may not be appropriate for areas with moderate to high 
wolf density as it can overestimate occupancy rate. On the 
other hand, if the size of the sampling unit is too small, then 
there is a risk of having very few detections within a year, 
which would make the estimation of the detection probabil-
ity diffi  cult. 

 Last, we assumed that observers were prospecting homo-
geneously inside the prospection area we assigned to them. 
Th is assumption may have been violated for two reasons. 
First, an observer might prospect more intensively near the 
center of the prospecting area, because it was defi ned as a 
home or work location, or near places where she/he already 
found presence signs (Duchamp et   al. 2012). We also 
assumed that observers were prospecting homogeneously 
in time. However, observers may show diff erent patterns 
in sampling frequency and some might not be prospecting 
during the months of winter. Finally, we assumed that once 
entered in the network, observers did not leave it unless we 
had information indicating the contrary such as a change 
of job or social status. Consequently, we might have over-
estimated the number of observers actually prospecting in 
the network. We therefore recommend recording carefully 
the activity of observers within the network to get a realis-
tic picture of the actual sampling eff ort (Beirne and Lambin 
2013).   

 Effects of environmental covariates 

 We used road density as a proxy of human presence and 
found a negative infl uence on the detection probability. 
When defi ning the road density covariate, we accounted for 
all types of roads (except highways). Because many observ-
ers from the network are wildlife professionals (Duchamp 
et   al. 2012), main roads may not be used and accessibility 
to a site may consist mostly in dirt and forest roads or path-
ways. Th e negative infl uence could be explained by the fact 
that wolves tend to avoid roads (Whittington et   al. 2005), 
therefore there might be fewer presence marks at sites with 
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colonization front is less well defi ned (Hartman 1994) com-
pared to a stepping stone dispersal strategy. Wolves seem to 
follow a similar pattern in France (Fig. 6). Th is biological 
trait used by wolves is mainly known as a mechanism to avoid 
competition with other packs (Hayes and Harestad 2000). 
Once the area becomes saturated, dispersers may settle at 
unoccupied sites at long distance with higher risks of mor-
tality due to an Allee eff ect (Hurford et   al. 2006, Sanderson 
et   al. 2013) or demographic stochasticity (Vucetich et   al. 
1997). In line with Marescot et   al. (2011) who estimated 
a positive rate of increase in abundance, we demonstrated 
that the spatial dynamic mechanism of the wolves ’  natural 
recovery is still going on, particularly outside the alpine 
range both northward and westward. However, this recov-
ery appeared to slow down, mainly due to areas becoming 
saturated within the alpine range associated with the natural 
barrier along the Rh ô ne valley slowing down dispersal and/
or a recent increase in offi  cial wolf controls. We may expect 
an increase in occupancy once few new packs have settled 
apart the alpine range. 

 We used dynamic occupancy models to assess the cur-
rent and dynamic distribution of a species that is expanding 
since it returned; there is a temptation to aim at forecasting 
its future distribution. However, we emphasize the diffi  culty 
of achieving this objective because we could not incorporate 
the drivers that may appear relevant to explain future colo-
nization events. For instance, now that wolves have settled 
in the alpine range and continue to expand, they are likely 
to encounter new environments such as lowlands in the next 
few years, a landscape that may drive future colonization. 
Consequently, use of our model as a predictive tool should 
be considered in an adaptive framework, i.e. by updating the 
management rules and the distribution maps every year dur-
ing the active colonization phase. 

 Th e outcomes of our analyses have important conse-
quences for managing animal species because their con-
servation status must be assessed partly through trends in 
their distributions (see art. 1 of the Habitats Fauna Flora 
European Directive). Dynamic occupancy models are 
therefore relevant tools to the decision-making process by 
providing maps and spatio-temporal trends. In the case of 
the wolf, these models can help in focusing the prevention 
of damage to livestock (Miller 2015). Th e identifi cation of 
areas where the species may or may not occur along with 
the surrounding uncertainty may be used to target specifi c 
sites and determine priorities for implementing mitigation 
measures. 
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