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Abstract. Managing large carnivores is one of the most controversial issues in wildlife
conservation, as the sociopolitical challenges it raises are as important as the biological ones.
Such controversial issues in wildlife conservation require objective biological components to
be implemented within the management decision process, in particular a reliable way of
estimating trends in abundance. However, these species usually exhibit territoriality, low
densities, and social constraints that can generate individual detection heterogeneity (IDH) of
methodological (sampling) or biological (social status, marking behavior) origin. If not
accounted for, IDH can lead, in turn, to strong bias in the estimation of population
abundance. As a complement to population size, we propose to use the population growth rate
(k) estimated with capture–recapture (CR) data, a robust method to detect and account for
IDH, to monitor and manage elusive species. As a case study, we consider the natural recovery
of the wolf (Canis lupus) population in France, for which a previous study has shown strong
IDH leading to a 27% underestimation of abundance. Analyzing a nine-year data set based on
a noninvasive sampling protocol relying on wolf scat genotyping, we adopt a new CR
approach to estimate k while explicitly accounting for IDH. The annual population growth
rate was estimated at 1.271 6 0.087 (mean 6 SE) vs. 1.270 6 0.095) when not accounting for
IDH, indicating that k is much less sensitive to IDH than is abundance. We evaluated the
robustness of our approach in a simulation study using increasing levels of IDH. The bias in k
increased with detection heterogeneity but was low whether we used a model with IDH or not.
Finally, we discuss the management implications of our findings in terms of sampling
protocols and management strategies of elusive species.

Key words: Canis lupus; capture–recapture; DNA microsatellites; France; genetic testing; individual
detection heterogeneity, IDH; mixture models; noninvasive methods; population growth rate; robustness;
wolf.

INTRODUCTION

Most of the large, wide-ranging carnivores face high

extinction risks because of anthropogenic disturbances

causing the deterioration of wild habitats, isolating small

populations and making them sensitive to environmen-

tal and demographic stochasticity (Rabinowitz and

Zeller 2010). However, large-carnivore conservation is

challenging because of its interactions with human

activities. In particular, wolf (Canis lupus) management

is one of the most controversial issues in wildlife

conservation because public opinions are highly polar-

ized (Treves et al. 2004). In Western Europe, this species

approached extinction at the end of the 19th century

(Breitenmoser 1998), surviving in fragmented relictual

populations in central Italy until the 1970s (Zimen and

Boitani 1975) and Spain (Blanco et al. 1992). As a

consequence of international laws for wolf protection,

the species started recovering both southward and

northward, and reached the Alpine range in the early

1990s. Noninvasive molecular tracking (Fabbri et al.

2007) and direct observation of GPS-equipped animals

(Ciucci et al. 2009) showed evidence of a natural

recolonization through the Apennine, a mountain chain

extending 1200 km along peninsular Italy.

The French government complied with the Bern

convention in 1979 and in 1992 signed the European

Habitat Directive (European Commission Environment

1992), which classified the wolf species as strictly

protected. The recovery of the wolf population in the

French Alps has created strong interactions with

agricultural activities in a landscape traditionally devot-

ed to intensive sheep breeding (.900 000 head in

summer). Since 1992, when the first wolf occurrences

in France were confirmed, the French government

started monitoring the wolf presence for conservation
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purposes while dealing with damages to livestock. Since

2000, prevention methods against livestock depreda-

tions, such as confining sheep in the presence of

guarding dogs, associated with a lethal control have

been proposed as a response to social pressure while

ensuring that the population viability is not threatened

(Chapron et al. 2003). In this context, careful monitor-

ing of the wolf population is crucial to assess the species

conservation status resulting from management deci-

sions and requires protocols for collecting data, as well

as robust indicators of population trends.

The monitoring of elusive and wide-ranging popula-

tions of large carnivores is often based on noninvasive

sampling methods such as camera trapping (Karanth et

al. 2006) or noninvasive molecular tracking (Taberlet

and Luikart 1999), because neither requires physical

captures. The French National Game and Wildlife

Agency (ONCFS) runs a noninvasive approach based

on molecular tracking from scat sampling (Valière et al.

2003) to monitor the population of wolves. These

genetic tags are used to estimate population size using

capture–recapture (CR) methods (for a review, see

Lukacs and Burnham 2005), which is in turn employed

as an indicator of population status (Mondol et al.

2009). However, standard CR models assume homoge-

neous detection probabilities among individuals, which

is commonly violated in many demographic studies of

various species (Ebert et al. 2010). For instance,

individual heterogeneity in the detection process has

been reported in several species, and is related to

behavioral traits that may change with environmental

and historical conditions, such as individual experience

(Coleman 1998). Although incorporating individual

covariates such as personality (Coleman 1998), sex

(Tavecchia et al. 2001), age (Crespin et al. 2006), or

social status (Summerlin and Wolfe 1973) is possible in

CR models, most of these indicators of individual

variability cannot be measured using noninvasive

genetic protocols (Skalski et al. 1993). However,

population size can be strongly biased when individual

detection heterogeneity (IDH) is ignored (e.g., Harmsen

et al. 2010). The higher the IDH, the stronger the bias is

(Carothers 1973).

A previous study of the French wolf population

showed a 27% underestimation of population size when

IDH was ignored (Cubaynes et al. 2010). Prior to

making decisions, managers need to account for such

bias in the estimation of abundance or find an

alternative demographic indicator.

We argue that the population growth rate (k) is a

relevant demographic indicator to assess the effects of

management rules and decisions on the conservation

status of the population and could be used as a

complement to population size. Several approaches are

available to calculate k. First, the comparison of two

successive annual abundance estimates from census data

is a commonly used empirical method to calculate k. An

alternative analytical method involves estimation of an

asymptotic growth rate by extracting the dominant

eigenvalue of a Leslie projection matrix (Caswell 2001).

Realized and asymptotic k are equivalent only if the

population is at a stationary state. Based on CR data, an

alternative approach was developed to calculate k,
which consists of summarizing the population inflows

and outflows through the estimation of apparent

survival rates (death and emigration) and recruitment

rates (birth and immigration) (Pradel 1996). This

approach gives a direct estimate of the rate of increase

of a population, based on time-specific estimates of

survival and recruitment, along with estimates of the

vital rates with the strongest effect on k. The CR

approach to estimate realized population growth rate

has been widely used in birds (Franklin et al. 2004),

mammals (Clark et al. 2005), reptiles (Lowe et al. 2008),

fishes, and mollusks (Villella et al. 2004). This method

has only recently been extended to cope with IDH.

Specifically, Pradel et al. (2009) developed CR mixture

models (sensu Pledger et al. 2003) in which distinct

classes of heterogeneity are considered.

Here, we show that the estimation of the population

growth rate is robust to IDH. First, we analyzed the

French wolf data to estimate k using CR models

accounting for IDH. Second, we performed a simulation

study to estimate the bias in the population growth rate

estimator when IDH was artificially generated. The

objective was mainly to provide a general demonstration

of the robustness of k to IDH under several scenarios

with contrasting degrees of heterogeneity. Finally, we

discuss the benefits of using a robust tool in terms of

population monitoring and management.

MATERIAL AND METHODS

Data collection

The wolf monitoring is carried out by the ONCFS

based on a dual sign survey framework: (1) An extensive

survey is conducted during the year by a network of wolf

experts who are dispatched to cover the alpine range and

report signs of presence. (2) An intensive sign survey is

stratified within all previously detected wolf territories

using standard snow-tracking and wolf-howling tech-

niques (Marboutin and Duchamp 2005), which allows

the collection of scats, hairs, tissues, or urine used in

DNA analyses. Individual genotypes were identified

using a set of seven DNA microsatellites and a multi-

tube approach. For every sample, each microsatellite

locus was amplified eight times (Taberlet and Luikart

1999). To assess genotype reliability and minimize

errors, we used a quality index corresponding to the

mean frequency of the consensus genotype among the

eight replicates at each locus (Miquel et al. 2006). We

discarded genotypes with average quality index , 0.4.

Among the 1167 samples collected, 840 were success-

fully genotyped, from which 160 individuals were

identified (Table 1). We partitioned the data set into

35 three-month intervals, from spring 1995 to autumn
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2003. Around 60% of individuals were detected only

once, whereas others were detected more than 45 times.

Estimating survival and recruitment with IDH

We performed two distinct analyses. First, we

estimated the survival probability ut, the probability

that an individual alive in year t survived to the next

year and remained in the study area. Second, we

estimated the seniority probability ct, the probability

for an individual present at a given occasion t to be

already present at the previous occasion, which is also

defined as 1� ft, where ft stands for the recruitment rate.

We assumed that there was no misidentification.

In both analyses, we incorporated IDH in the model

by assuming that individuals were distributed in two

detectability classes (high and low recapture probabili-

ty). Such models belong to the family of mixture models

(Pledger et al. 2003), which were reformulated using a

hidden structure corresponding to individuals that

belong to a specific IDH state (Pradel et al. 2009).

Depending on the frequency of detections, an individual

can be assigned to three underlying states: alive with a

high detection probability (‘‘H’’), alive with a low

detection probability (‘‘L’’), or dead (‘‘D’’). Two

observations were possible: ‘‘1’’ for a detection and

‘‘0’’ for otherwise.

For example, the encounter history ‘‘1101’’ corre-

sponds to an individual present and encountered in the

first, second, and last sampling occasions, but missed in

the third one. When accounting for IDH with time-

dependent parameters, its probability is

Pð1101Þ ¼ p:u1:p2
L:u2ð1� p3

LÞ:u3p4
L

þð1� pÞ:u1:p2
H:u2ð1� p3

HÞ:u3pH
4

where p is the probability that an individual belongs to

state L and pL and pH are the detection probabilities in

the L and H detection classes.

In a second step, we estimated seniority by reversing

the encounter histories (Pradel 1996). If we consider

again the same individual, it has a reversed history 1011.

Given that it was last detected at occasion 4, it was

already present at occasion 3 with probability c4, was
detected at occasion 3, and was already present at time 2

with probability c3, was missed at occasion 2 but was

already alive and detected at occasion 1, which gives

Pð1101Þ ¼ t:c4:p
L

3:c3ð1� pL
2Þ:c2:p

L
1

þð1� tÞ:c4:p
H

3:c3ð1� pH
2Þ:c2:p

H
1

where t is the proportion of individuals in the detection

class L.

Joint analysis of population growth rate

To estimate k, we considered a joint model parame-

terized in terms of recruitment, survival, and detection

probabilities. The number of individuals at time t that

have survived can be expressed as Ntut, which is

equivalent to the number of individuals at time t þ 1

that were not recruited between t and tþ 1, i.e., Ntþ1ctþ1.
Setting these two quantities equal, the realized k can be

expressed as the ratio of survival and seniority rates

kt ¼ Ntþ1=Nt ¼ ut=ctþ1:

This formula does not explicitly involve the detection

probability, which makes it valid whether or not IDH is

included in the CR model.

The separate recruitment and survival analyses were

carried out using program E-SURGE (Choquet et al.

2009), whereas the joint k analysis was implemented in

MATLAB by adapting existing codes (Pradel et al. 2009).

Temporal and IDH effects on survival and recruitment

For the seniority analysis, we considered models with

IDH and temporal effects on all parameters. We fitted

models from the simplest CR model with constant

seniority probability and constant homogeneous detec-

tion probability to the full model with time effects on the

seniority probability and an interaction between time

and IDH on the detection probability. Besides sampling-

period effects (from 1 April 1995 to 31 December 2003

with a three-month time step), we also tested for season

(four groups with detection events gathered every four

seasons in successive years) and year effects (four

successive occasions gathered nine times) on the

detection probability that might reflect a different

sampling effort across years and seasons, with better

conditions to detect signs during winter. Similar

temporal effects were also tested on seniority. We also

investigated models with different recruitment probabil-

ities in both detection classes, assuming that IDH could

arise from the dominance status of the wolf alpha pairs

vs. subordinates.

For the survival analysis, we refer to Cubaynes et al.

(2010), who analyzed the same data to estimate

abundance. Models including or ignoring IDH were

also considered. The same effects as previously described

were investigated.

TABLE 1. Structure of the wolf genetic data set, showing
annual distribution of samples, number of genotypes
detected, and the percentage of individuals detected only
once.

Year
No.

samples
No. genotypes

detected
Detected only

once in a year (%)

1995 13 4 25
1996 46 12 33
1997 90 21 52
1998 161 30 33
1999 116 31 52
2000 110 25 44
2001 113 38 60
2002 286 69 52
2003 240 66 54

Note: The number of samples (indices) includes the number
of scats, hairs, urine, and blood collections used in the DNA
analyses.
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Model selection was based on the Akaike Information

Criterion corrected for small sample size (AICc; Burn-

ham and Anderson 2002). We additionally calculated
AICc weights to quantify the likelihood that the data are

better represented by a particular model than other

candidate models.

We proceeded with the joint analysis of k by building
models ranging from the simplest (with constant

survival, seniority, and detection probabilities) to the

full model (with time dependence in survival and

seniority rates and interaction effects of time and
heterogeneity on the detection probability). All models

were compared to their counterpart, ignoring IDH.

Simulations

k robustness to IDH.—We investigated the robustness

of k using simulations under scenarios with increasing

IDH. We calculated the bias and precision in the k
estimator when using a CR model accounting for IDH

vs. a CR model ignoring IDH. If the two estimates were

close, we concluded that k was robust to IDH. We
simulated data with survival u ¼ 0.85 and k ¼ 1 (stable

population), 1.05 (increasing population), or 0.95

(decreasing population). We generated a gradient of

heterogeneity in the detection probability. At the first
occasion, two cohorts of N ¼ 50 individuals were

assigned to both detection classes. We ran the study

on 10 sampling periods. At each new occasion, we added
to the two detection groups as many individuals as there

were individuals expected to die, i.e., N(1 � u) (Hines

and Nichols 2002) in the stable population, Nt�1(1� u)
þ 0.05Nt�1 in the increasing population and Nt�1(1� u)
� 0.05Nt�1 in the decreasing population. These new

recruits survived and were detected with the same

probabilities as in the first two cohorts. Detection
probability in the reference detection class was p1 ¼
0.9, and p2 in the other class varied from 0.1 to 0.9. By

doing so, we investigated five levels of IDH from the

most heterogeneous scenario ( p1 ¼ 0.9 and p2 ¼ 0.1) to
the most homogeneous one ( p1 ¼ p2 ¼ 0.9). For each

scenario, we simulated 500 data sets to which we fitted

two models ( joint likelihood) to estimate k, one with
homogeneous detection probability (model (u, p, c)) and
the other with heterogeneous detection probability

(model (u, phet, c)). We looked at the bias in k̂ the

estimator of k calculated as

Bðk̂Þ¼Eðk̂Þ � k
k

’

X500

i¼1

k̂i

500
� k

k
:

To assess the precision, we calculated the mean square

error MSE(k̂), which can be approximated as

MSEðk̂Þ’
X500

i¼1

ðk̂i � kÞ2

500
:

A low MSE is characteristic of a good trade-off between
low bias and low variance.

Adapted simulation to mimic the wolf case study

We carried out simulations mimicking the French

wolf population case study. Although individual het-

erogeneity in survival was found in a previous analysis

of the data (Cubaynes et al. 2010), it could not be

incorporated in the joint analysis of k. To investigate the

potential bias, we simulated data with two groups of

individuals with different survival probabilities using the

same procedure as before. Parameter values were chosen

to match the estimates that were obtained from the best

model in the survival analysis (Cubaynes et al. 2010): u1

¼ 0.75, p1¼ 0.1, u2¼ 0.9, p2¼ 0.7 and p¼ 0.75. We then

looked at a scenario similar to the joint analysis of k. We

generated 500 data sets with 35 capture occasions using

parameters matching the estimates that we obtained

from the best model fitted to the wolf data set.

RESULTS

Wolf data analysis

Analyses of survival and recruitment.—IDH was

selected by the AICc in the seniority (Table 2) and the

survival analysis (Cubaynes et al. 2010; see Appendix B).

TABLE 2. Model selection in the seniority analysis of the
French wolf population (1995–2003), sorted by increasing
AICc.

Model

np AICc AICc weightsSeniority Detection

het het þ t 38 1341.56 0.752
het het þ season 8 1344.47 0.175
hom het þ t 37 1347.69 0.035
hom het þ season 7 1347.69 0.035
hom het 3 season 10 1352.83 0.003
het het þ year 13 1361.65 0
hom het þ year 12 1366.28 0
het het 3 year 21 1366.45 0
het het 5 1367.43 0
hom het 4 1370.48 0
hom het 3 year 20 1371.7 0
het het 3 t 70 1396.36 0
het Season 7 1423.23 0
het het 3 season 11 1430.31 0
het t 37 1434.82 0
het hom 4 1443.52 0
het year 12 1446.58 0
hom season 5 1462.75 0
hom t 35 1479.46 0
hom hom 2 1484.41 0
hom year 10 1492.04 0

Notes: The number of estimable parameters is given by ‘‘np.’’
Akaike weights allow one to interpret the observed AICc

differences in terms of conditional probabilities for each model
and to evaluate the extent to which the data are supported by a
model over all other candidate models. Models incorporated
individual heterogeneity (het) or homogeneity (hom) in
detection and seniority probabilities, and the main effects of
time (t, in 3-month intervals), season, or year tested with
individual heterogeneity on an additive (þ) or interaction (3)
scale. Models with temporal effects on seniority (trimester,
years, seasons) were not displayed because their AIC was
uniformly lower than that for models without temporal effects
on seniority. The table shows the same effects on parameters as
in Cubaynes et al. (2010).
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However, there were discrepancies in the temporal

effects in the survival vs. the seniority analysis. In the

latter, a model with a sampling-period effect on the

detection probability was selected (recall that the time

unit is a three-month period here; Table 2) while in the

former, Cubaynes et al. (2010) found a semester effect.

The best model in the seniority analysis was four times

as plausible as a model with season effects on the

detection rate. It showed an annual seniority rate of

0.809 (95% confidence interval: [0.793–0.823]) for the H

class (annual recruitment rate of 0.191) and 0.578

([0.553–0.602]) for individuals belonging to the L class

(Table 3). Detection probabilities ranged from 0.082

([0.011–0.416] to 0.836 ([0.630–0.939]) for the H class

and from 0.006 ([(0.001–0.046]) to 0.248 ([0.093–0.513])

in the L class (Table 3).

Joint analysis of k

In the joint analysis, models with constant survival

and seniority were consistently better ranked than those

with season, trimester, and year effects. The best model

accounted for an additive effect of season and IDH on

the detection probability (Table 4) and was three times

as plausible as the equivalent model with a season effect

on the vital rates.

Annual survival (u ¼Put) was 0.839 ([0.765–0.913]),

and the annual recruitment rate ( f¼ 1� Pct) was 0.342
([0.264–0.420]). The detection probabilities for both L

and H classes were higher in winter and spring

compared to the summer and autumn season (Table

3). We estimated that 12.5% ([6.8–18.2%]) of the

individuals were in the H class.

Estimates and confidence intervals of annual k were

similar between the best model accounting for IDH

(1.271 [1.201–1.343]) vs. the second best model excluding

IDH (1.270 [1.200–1.435]).

Simulations

Five scenarios with contrasting IDH.—We found

similar estimates and low bias in k estimated in the

heterogeneous (u, phet, c) vs. homogeneous model (u, p,
c) (,0.005%; Fig. 1 and Appendix A). This was verified

TABLE 3. Parameter estimates of wolf survival (u), seniority (c), population growth rate (k), and detection rate ( p) in separate and
joint analyses of the best-fitting model, assuming a two-class heterogeneous (het) mixture of individuals.

Parameter and
analysis type

Separate analysis, best models
(chet, phetþt) and (uhet, phetþsemester)

Joint analysis, best model
(u, phetþseason, c)

Low detectability High detectability Low detectability High detectability

Seniority, c 0.578 (0.553–0.602) 0.810 (0.793–0.823) 0.660 (0.597–0.725)
Survival, u 0.753 (0.54–0.94)� 0.901 (0.717–0.984)� 0.839 (0.765–0.913)
Growth rate, k 1.271 (1.101–1.44)

Survival analysis detection, p

Jan–Jun 0.22 (0.11–0.37)� 0.86 (0.74–0.96)�
Jul–Dec 0.10 (0.05–0.18)� 0.64 (0.51–0.82)�

Seniority analysis,
by trimester

range 0.006 (0.001–0.046)
to 0.248 (0.093–0.513)

range 0.082 (0.011�0.416)
to 0.836 (0.630�0.939)

Joint analysis

Spring 0.072 (0.011�0.133) 0.576 (0.487�0.665)
Summer 0.046 (0.007�0.085) 0.369 (0.294–0.445)
Fall 0.046 (0.006�0.086) 0.373 (0.300�0.446)
Winter 0.0847 (0.013–0.156) 0.677 (0.592–0.761)

Notes: Individuals of low and high detectability classes are included in the heterogeneous mix. Semester detection probabilities
are given in the survival analysis. In the seniority analysis the best model detected an effect of sampling period dependence
(trimester) on the two detection probabilities. The range of detection probabilities in the two detection class is given. Values in
parentheses are 95% confidence intervals.

� Results are from Cubaynes et al. (2010).

TABLE 4. Model selection in the joint analysis of the French
wolf population growth rate (1995–2003).

Model np AICc AICc weights

(u phetþseason c) 8 2335 0.705
(useason phetþseason cseason) 14 2337 0.259
(u phet3season c) 11 2341 0.035
(uyear phetþseason cyear) 22 2349 0.001
(useason phet cseason) 11 2361 0
(u phet c) 5 2376 0
(uyear phet cyear) 19 2389 0
(ut phetþseason ct) 74 2391 0
(ut phetþt ct) 104 2402 0
(u pseason c) 6 2467 0
(useason pseason cseason) 12 2471 0
(useason p cseason) 9 2484 0
(uyear pseason cyear) 20 2487 0
(u pseason c) 6 2467 0
(u p c) 3 2503 0
(ut pseason ct) 72 2513 0
(uyear p cyear) 17 2514 0
(ut pt ct) 102 2526 0

Notes: Terms are np, number of parameters; u, survival rate;
p, detection probability indexed by time t for sample-period
effects (three-month interval) or by season for seasonal effects
and by het for heterogeneity effects; c, seniority rate; and p,
proportion in the high-detection class. The AICc weights allow
one to interpret the observed AICc differences in terms of
conditional probabilities for each model and to evaluate the
extent to which the data are supported by a model over all other
candidate models.
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for the stable (Fig. 1a), the increasing (Fig. 1b), as well
as the decreasing populations (Fig. 1c). The estimated

bias increased with detection heterogeneity (Fig. 1), with
the lowest value for the homogeneity scenario (B(k̂) ’

�0.0001 for p1 ¼ p2¼ 0.9; Appendix A), and the largest

bias for the extreme heterogeneity scenario (B(k̂) ’

�0.01 for p1¼ 0.9, p2¼ 0.1; Appendix A). The bias was

negative except for the scenario with an increasing
population and with two homogeneous groups of
individuals (B(k̂) ’ 0.0034 in (u, phet, c); B(k̂)) ’

0.0038 in (u, p, c)) and for the scenario with a decreasing
population in the cases of p2 ¼ 0.7 and p2 ¼ 0.9

(Appendix A). The patterns in the bias for survival and
seniority rates were similar to what we found for k
(Appendix B). MSE was negligible in most cases and

decreased along the gradient (from the most heteroge-
neous to the homogeneous scenario); incorporating IDH

did not increase MSE considerably (Appendix A).

Simulations mimicking the case study

Ignoring individual heterogeneity in survival caused

no significant bias in growth rate (B(k̂)¼�8.4 3 10�3 in

the homogeneous model vs. B(k̂) ¼�6.9 3 10�3 in the

heterogeneous model). No significant bias in k̂ was

found when mimicking the wolf case study. It was small

and similar whether we accounted for heterogeneity or

not (B(k̂))¼ 1.483 10�3 in the homogeneous model and

B(k̂)¼ 1.723 10�3 and in the heterogeneous model). We

found low MSE in simulations with IDH in survival

(MSE(k̂) ¼ 5.6 3 10�6 in the homogeneous model,

MSE(k̂)¼ 6.8 3 10�7 in the heterogeneous model).

DISCUSSION

Using CR data on wolves, we provided evidence of

the robustness of population growth rate to IDH,

further endorsed by simulations accounting for scenar-

FIG. 1. Population growth rate bias B(k̂) in the heterogeneous model (u, phet, c; triangle symbols) and the homogeneous model
(u, p, c; cross symbols) for wolves in France, where u is survival and c is seniority. The homogeneous model assumed constant
detection probabilities among individuals, whereas the heterogeneous model assumed that individuals were distributed in two
detectability classes ( p1 and p2 recapture probability). In all three panels, detection probability in the reference detection class was
p1 ¼ 0.9; in the other class it varied along the detection gradient, p2 ¼ (0.1, 0.3, 0.5, 0.7, 0.9). These models were fitted to data
simulated under three scenarios: (a) k¼ 1 for a stable population; (b) k¼ 1.05 for an increasing population; and (c) k¼ 0.95 for a
decreasing population; in all cases, u ¼ 0.85. Mean square errors are provided in Appendix A.
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ios with contrasting levels of detection heterogeneity.

The simulations revealed negligible bias and low MSE in

all scenarios we considered. We found a small negative

bias in survival that increased as the detection hetero-

geneity increased, in accordance with Devineau et al.

(2006). Hines and Nichols (2002) merely detected a bias

in k when fitting a model with constant parameters and

a homogeneous detection. They could not fit a model

having two heterogeneous detection classes as it had not

yet been developed. Our approach assesses the robust-

ness of k with respect to IDH by comparing the

estimators from models with homogeneous vs. hetero-

geneous detectability. Our results were obtained for

models with constant parameters as they matched our

findings for the wolf case study. Further investigations

exploring alternative scenarios (e.g., time effects) would

be useful to complement the robustness analysis.

From the application to the French wolf population,

the joint analysis revealed that k was robust with respect

to IDH. We found that the population annually

increased by 27% whether IDH was taken into account

or not. We investigated the effect of heterogeneity in

survival and seniority separately because the joint

analysis cannot account for it in all parameters

(including detection) simultaneously (Pradel et al.

2009). However, our simulations showed that ignoring

individual heterogeneity in survival and seniority was

unlikely to cause bias in the estimation of k for the wolf

case study.

IDH can result from underlying features intrinsic to

the nature of the data or the species’ biology and from

extrinsic features of the sampling design induced by

noninvasive surveys (Crespin et al. 2008). The noninva-

sive molecular tracking using scats always runs on

borderline conditions regarding low quantity and

quality of the DNA material (Taberlet et al. 1996).

There is a risk of detecting false allele or allelic dropouts,

which generate additional individuals detected only once

(Marucco et al. 2009). A recent study on wolves

(Marucco et al. 2009) using noninvasive genetic data

and a multi-tube approach found that 46.3% of the

initially detected genotypes had to be discarded because

of allelic dropouts, false or partial null alleles. In case

artifactual genotypes still remain, one can account for

misidentifications explicitly in the closed-population

models using recent developments in the analysis of

CR data (Wright et al. 2009, Link et al. 2010). Note,

however, that these methods are still to be developed for

open populations to correct survival and population

growth rate for identification errors.

In addition to the nature of the data, there are also

biological explanations for IDH. Because animals were

not captured physically, it was not possible to collect

state covariates possibly underlying individual hetero-

geneity, e.g., social status (Summerlin and Wolfe 1973,

Ebert et al. 2009, Wilson et al. 2003) or age (Davis et al.

2003, Crespin et al. 2006). Further analyses could be

conducted for each scat genotyped to produce the

information required and include it in the model as a

covariate. However, generating relevant information at

the individual level from genetic tags remains challeng-

ing. First, even though discriminating alpha pairs from

their offspring in molecular tracking through kinship

analysis is feasible, it would require a larger set of

microsatellites allowing assignment tests (Blouin 2003).

Second, information on age is difficult to extract from

scat deposit and subsequent genetic analyses except

where visual contact at dens or rendezvous sites during

summer is possible.

Although the sampling strategy used standard proto-

cols of snow-tracking and wolf-howling, the sampling

effort outside wolf pack territories could not be

quantified for logistical reasons. The monitoring was

carried out across the Alps (.85 000 km2) involving

1000 observers geographically located to optimize the

spatial coverage and the chances of detecting scat. IDH

is more likely to arise in such large areas because

individuals that are usually difficult to detect, the

dispersers, can be sampled. In contrast, Marucco et al.

(2009) did not detect heterogeneity among individuals in

the detection process, probably because they undertook

an intense surveying effort on a small sampling coverage

with few sampling occasions. More generally, in a meta-

analysis of 38 studies, Ebert et al. (2009) showed that

when the sampling coverage and the number of

sampling occasions were low, the IDH was less likely

to be detected even though it was intrinsically present.

IDH might also be related to the fact that the

systematic winter tracking can overlap with favorite

itineraries of some wolves having a particular marking

behavior. Using trained dogs to search for feces could be

a relevant strategy to overcome this issue (Smith et al.

2003), as they can find samples off trails in places

difficult to reach and hence detect with higher proba-

bility those individuals from the low detectability class.

Radiotelemetry could also be useful to discriminate

extrinsic IDH related to scat sampling designed on line

transects from intrinsic IDH related to the biology of

species highly mobile, such as wolves, coyotes (Kohn et

al. 1999), or bears (Boulanger et al. 2004).

Because IDH was detected in our data, it is not

necessary to spend more effort in the field trying to

detect IDH and its potential sources; we choose to

model IDH using a CR mixture model with two hidden

detection classes. However, one should remain cautious

when trying to biologically interpret the detection

classes; complex biological phenomena may influence

detection probability. Based on common knowledge of

the wolf life cycle, the highly detectable class might

correspond to dominant individuals that were more

likely to defecate or urinate to mark their territory in

deliberately placed locations to be more detectable (Vila

et al. 1994), whereas the weakly detectable individuals

might include both pups and subordinates. Dispersers

may also be assigned to the weakly detectable class

(Cubaynes et al. 2010) because they lived mostly outside
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of the pack territory where the main survey effort

occurred. In the separate analysis, 81% of the individ-

uals alive in the H class at a given year were already alive

the year before, suggesting that they were neither

yearlings nor immigrants. Therefore the high-detection

class surely represents the dominant resident adults

(Mech and Boitani 2003). In the weakly detectable class,

the seniority rate was 57%, suggesting that this class is

made up of many of the new recruits, i.e., the yearlings

and the immigrants entering the population.

Seasonal effects on detection probability can be

related to the species’ biology and/or the study design.

We found that higher detection probabilities in both the

low- and high-detection classes occurred in winter. This

might be explained by the presence of snow, which

favors both track and scat detection. DNA quality also

increases in the cold, minimizing the genetic loss before

PCR runs. A possible biological explanation could be

that, during summer, pups stay at home sites (den and

rendezvous locations) until early fall (Harrington and

Mech 1983). In winter, all of the members of the pack,

including yearlings, get knit together for hunting, which

would explain a higher detection probability through

their scat deposit.

When wolves colonize agricultural areas that have

been unoccupied for generations, socioeconomical

conflicts emerge with shepherds struggling to protect

their livestock from depredations, and governments

devote large funds for damage prevention and compen-

sation (Rutledge et al. 2009). Because the French wolf

population is now better established than during the

1990s, and may in some places already be close to

‘‘social carrying capacity’’ (Beyer et al. 2006), some

lethal control has been implemented by the French

government to manage hotspots where attack rates on

livestock were high, to improve social acceptance and

ensure long-term population viability. These decisions

often relied upon assessment of abundance and sustain-

able harvest rates (Patterson and Murray 2008). Since

2004, the French wolf action plan has been established

to match the international requisites of population

viability (Chapron et al. 2003) and to ensure a favorable

conservation status (k . 1, sensu the 1992 European

Habitat directive).

Overall, we see population growth rate (regardless of

the approach used to calculate it; see Introduction) as a

complement or an alternative to population size,

depending on the study context, to assess the impact

of management strategies on the population dynamics.

In a small population, for example, for which a precise

estimate of abundance is not a helpful indication of its

status, population growth rate is a better metric for

conservation. In other situations, e.g., for large harvest-

ed populations, population growth rate alone is not

sufficient for making management decisions and an

estimate of population size is required.

The realized k is easy to estimate from CR data, is

robust to IDH, and we recommend its use as an

indicator for management for several reasons. First, the

modeling process is easy to implement because unbiased

and accurate demographic estimates can be obtained

with homogeneous models (ignoring IDH) that are

relatively straightforward to fit. Second, estimating k
provides some insight into the mechanisms underlying

interannual abundance variations in terms of survival

and recruitment, which are two vital processes that

managers can control (Nichols et al. 2005). Third, it

costs less time and money for managers to be aware of

the presence of IDH and to use a robust population

indicator, compared with trying to avoid IDH by

improving monitoring protocols. Finally, in contrast to

other methods based on minimal counts using ground-

tracking (Beyer et al. 2004) or aerial surveys (Crete and

Messier 1987), our approach provides a measure of

uncertainty associated with k. Quantifying and incor-

porating sources of uncertainty into the decision-making

process, although challenging (Regan et al. 2005), is

important to balance the social and conservation risks

when controlling population size.
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APPENDIX A

Population growth rate bias and mean square error in the heterogeneous model and the homogeneous model fitted to simulated
data (Ecological Archives XXXXXXX).

APPENDIX B

Survival and seniority bias and mean square error in the model with heterogeneity vs. a model with homogeneity (Ecological
Archives XXXXXXX).
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